
JOURNAL OF APPROXIMATION THEORY 10, 237-244 (1974)

Existence and Uniqueness in Approximation by

Integral Polynomials*

LE BARON O. FERGUSONt

Institut de Mathematiques, Faculte des Sciences, Universite de Nancy I, 54-Nancy, France
and

Department ofMathematics, University of California, Riverside, California 92502

Communicated by Oved Shisha

In this paper we study the existence and uniqueness questions for uniform
approximation over compact sets by polynomials whose coefficients are, in
some sense, integers. These polynomials are the integral polynomials of the
title. We also obtain some results useful in estimating the error of approxi
mation in such cases.

Throughout, the symbol X will stand for a compact Hausdorff space and
C(X) (respectively, CR(X)) for the set of continuous complex (respectively,
real) valued functions on X. We write II . lis for the uniform norm over S where
SC X. Thus

Ilflls = sup If(s)l·
sES

We make the convention that IIfl10 = °where 0 is the empty set. This is
convenient in the statement of Theorem 2, for example. It is also reasonable,
since the quantities 1 f(s)1 always lie in [0, (0) and taking [0, (0) as the
universal set leads to sup 0 = °by definition. We usually write II . II in place
of II . 'Ix. If.% is a subset of C(X) (respectively, CR(X)) and R a subring of the
ring of complex numbers C (respectively, the ring of real numbers R), we
write R[.%] for the ring of functions of the form
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where the a's belong to R and the f's are elements of .F. If ,IF reduces to a
single element f; we write (R[.FD" for the set of polynomials of degree at
most n inf The elements of R[.Fj are called integral polynomials. There are
three cases to distinguish:

1. In the abstract case, X is any compact Hausdorff space, the ring R is the
ring Z of rational integers ({O, ::L [, :±2,...}), and .'7" is a separating family in
CR(X), that is, for any two distinct points x, y in X there exists ant EO ,IF with
f(x) eft f(y)·

2. In the complex case, X is a compact subset of the complex plane. The
ring R is a discrete (i.e., °eft a EO R implies Ia I ): 1) subring of C (e.g., the
ring of Gaussian integers Z -T- iZ) and .'¥ consists simply of the identity
function z.

3. In the real case, X is a compact subset of the real line, the ring R is the
ring of rational integers Z, and ,IF consists of the identity function x.

In all three cases we define a subset J of X as follows. Let

PJJ ~= {q EO R[,lFj: II q < I}.

Then

.J = {x EO X: q(x) = 0, all q EO &8}.

In general, for any G C C(X),j EO C(X), and sex we define

dists (f, G) = inf II [ - g lis.
. gEG .

We write dist(j, G) for distx(j, G). A best approximation to f from G is any
g EO G satisfying Ilf -< gil = dist(j, G). The existence question is whether or
not a best approximation exists for eachf EO C(X) (CR(X)) and the uniqueness
question is whether or not more than one best approximation may exist.

We first consider the existence question. As in the case of unrestricted
coefficients, if we approximate by polynomials of degree at most n the
existence question has an affirmative answer.

In the following we say that a subring R of C(X) or CR(X) has finite rank if
the linear subspace it generates has finite dimension.

THEOREM 1. If R is a closed subring of C(X) offinite rank then for every f
in C(X) there is a best approximation in R.

Proof Let d = dist(j, R). Then the set of best approximations to f from
R is clearly

() [(f + d'B) n Rj,
d'>d
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where B is the closed unit ball of C(X). The problem thus is to show that this
intersection is not void. It suffices for this to show that every (f + d'B) (l R
is compact by elementary topology. Since (f + d'B) (l R is closed it suffices
to show that it is contained in a compact set. Since R has finite rank the linear
space V generated by it has finite dimension. V is a topological vector space
with finite dimension, hence locally compact. Thus (f + d'B) (l V is compact
and since it contains (f + d'B) (l R we are done. I

Notice that the proof, hence theorem, remains valid if we replace C(X) by
CR(X).

Let A be a discrete subring of the complex numbers. If X is a compact
subset of C then (A[zDn clearly has finite rank in C(X). In order to apply the
theorem with R = (A[zDn then we need only show that (A[zDn is closed in
V = (c[zDn, since the latter is finite dimensional, hence closed in C(X).
Suppose that [pd is a sequence in (A [zDn converging to a polynomialp in V.
Since the powers 1, Z,oo., zn form a basis for V the projections 7Ti: V -~ C
(0 i ::::; n) which send each polynomial into its ith coefficient exist and are
continuous on V. Thus 7Ti(P,J -,.. 7Ti(P) as k -,.. 00. Since A is discrete and a
subring of C it is closed in C, as is well known. The 7Ti(Pk) are elements of A,
hence 7Ti(P) E A (0 ::::; i ::::; n) which shows that P E (A [zDn . Since {Pic} is any
sequence in (A[zDn with a limit in V, (A[zDn is closed in V.

Notice that the same argument works in the case in which A is a discrete
subring of the reals R (possibly Z), X is a compact subset of R, and C(X) is
replaced by CR(X).

Thus we have existence when we approximate by polynomials with integral
coefficients and bounded degree. It is natural to ask if we also have existence
when we approximate by polynomials with integer coefficients without a
bound on the degree. Here we are approximating by a ring which is not closed
in general; clearly an elementfwhich is approximable (dist(f, Z[xD = 0) but
not in the ring does not have a best approximation from the ring. It can also
occur that a continuous function which is not approximable by the ring of all
polynomials does not have a best approximation from this ring. See
Andria [1, Th. 8].

We next consider the uniqueness question. Approximation by integral
polynomials fails to be unique even in very simple cases. For example,
consider approximation by (Z[xDn on a compact subset X of the real line
with () EX. Letf =::' 1/2 on X. Then, since 0 E X, dist(f, (Z[xDn) ~ 1/2 and,
since the identically zero function is in (Z[xDn, dist(f, (Z[xDn) = 1/2, and
this for all positive integers n. The same argument shows that
distU: Z[xD = 1/2. Thus, in all these cases the two polynomials PI == () and
P2 == 1 are best approximations to f on X. There may be even more. For
example, in the cases n ~ 2 in the above and for compact X satisfying
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oE X C [~ 1, I] the polynomials I -- x 2 and x2 are also best approxi
mations.

The next theorem and its application to the real case which follows is a
generalization of Andria [I, Th. 5], who proved it in the real case for X an
interval [a, b] with b - a < 4. Notice that the case J = does not cause
a problem here due to the convention = O.

In the following theorem define J as above but with G in place of the
ring R[ff].

THEOREM 2. Suppose

(i) X is a compact Hausdorjjspace,

(ii) G is a subgroup of C(X) (respectively, CR(X)), and

(iii) an element f of C(X) (respectively, CR(X)) is approximable
(dist(f, G) = 0) if and only if there exists p in G such that f ~ p on J. Then
f E C(x) (respectively, CR(X)), pEG and

Ilf- p IIJ < Ilf- p lix

imply that p is not a best approximation to ffrom G.

Proof Let 8 be any positive number. Set fL =1/ - plJ and

F = {x E X: If(x) -- p(x)j :;: fL --i-- 8}.

By the continuity off and p, F is a closed subset of X. Also, notice from the
definition of J that it is the intersection of the zeroes of the elements of G with
norm strictly less than one. Since these elements are continuous, J is closed
in X. Also from the definition of F we see that F and J are disjoint. Thus, by
Urysohn's lemma, there exists h in C(X) with 0 ~ h ~ I, h(J) = {O} and
h(F) = {l}. Since 0 E Z and h(f - p) == 0 on J there is by (iii) a p' E G
satisfying

Ii h(f- p) -- p' Ix < 8.

Also, by the way h was constructed and the definition of F,

11(f - p) - h(f - p)llx = il(f - p) - h(f - p)llx\F

~ III - h !IX\F lif - p Ilx\F ~ fL + 8.

From (I) and (2) and the triangle inequality,

11(f - p) - p' II < fL + 28.

(I)

(2)

Since 8 was any positive number we see that p' can be chosen so as to make
IiI - (p + p'YI arbitrarily close to fL. Since p + p' E G we are done. I
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Theorem 2 applies in all three of our cases, possibly under some restrictions,
as follows:

In the abstract case let G be the ring Z[.3~:l We see from Hewitt and
Zuckerman [3, Th. 6.2] that (iii) is satisfied, hence the conclusion of the
theorem holds in this case.

In the complex case let A be a discrete subring of C with rank 2 (i.e., the
real linear space generated by A is all ofC) and G = A[z]. If Xis a subset ofC
with transfinite diameter d(X) ? I then ~ = {O} as follows. Suppose
o 1= q E:18. Then II q II < I and, dividing q by its leading coefficient we can
assume that q is monic. We still have II q Ii < I since the nonzero elements of
A have modulus at least unity (A is discrete). Let the degree of q be n. We have
n > () since q is monic and the only monic polynomial of degree zero is
p =:= I. Define

M k = inf{11 t : t monic, deg t = k}.

Then, for every positive integer j,

M jn ~ II qj II = II q iii;
hence

(Mjn)l/jn ~ q Illln < I,

which shows that the sequence {M,~/k} does not have a limit greater than or
equal to unity. It is well known (Hille [4, p. 226, Th. 16.1.2]) that {M~/k}

converges to the transfinite diameter of X, a contradiction. Since ~ = {O}
we see that, when d(X) ? I, J = X. When J = X, the conclusion of
Theorem 2 holds vacuously. On the other hand, if d(X) < I and X is a
Lavrentief subset (compact, void interior and connected complement) of the
plane then by Ferguson [2, Th. 5.7 and 5.9] the hypothesis (iii) of Theorem 2
is satisfied and the conclusion holds in this case.

In the real case, if d(X) ? I we see as above that:18 = {O} and the conclusion
of Theorem 2 holds vacuously. If d(X) < I, then by Ferguson [2, Th. 6.5]
the hypothesis (iii) of Theorem 2 is satisfied and the conclusion of the theorem
holds in this case also.

The following application of Theorem 2 is interesting in that it reduces the
problem of determining the distance from an f E C(X) to the set of integral
polynomials to a finite dimensional problem, in many interesting cases. We
first prove the following variation on the theorem:

THEOREM 3. Under the hypotheses of Theorem 2, for any f in C(X)
(respectively, CR(X»

distx(j, G) = distil, G).
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Proof: It is clear from definitions that distxU; G) distAl; G). To prove
the reverse inequality let E be any positive number. Then by definition of
distil, G) there exists g E G with

If 111'-- g Ilx = U -- g II J then by definition

distAl: G) < distil; G) + E/2. (3)

Ifllf -- g Ilx > Ilf - g IIJ then as in the proof of Theorem 2 we can findg' in G
such that

Ilf - g - g' Ilx .-:'(If - g ;!J + E/2 < distil, G) + E.

Hence, since g + g' E G we have

distAl, G) < distil, G) ~ E.

Since E is any positive number we conclude from either (3) or (4) that

distA.f, G) distJ(f, G),

as was to be proved. I

(4)

COROLLARY 4. Let X be a Lavrentief subset of C with d(X) < 1 and A
a discrete subring of C with rank 2 and containing the identity. Then for any
fE C(X)

(i) distx(f, A[z)) = distil, A[z)), and

(ii) there exists q E A[z] such that

ilf - q .IJ = distJCf, A[z)).

Proof We have already seen that our hypotheses here imply those of
Theorem 2, hence Theorem 3, and (i) follows. Next we prove that the subset J
of X is finite, as follows. Since 1 > d(X) = Iimk_,x Milk we have M k < 1
for some k. From the definition of M k there exists a monic polynomial t with
!I ttl < 1. By Ferguson [2, 5.3] there exists a q E A[z] with II q i: < I. Then,
by definition, J is a subset of the roots of q, hence finite.

Since J is finite we can show (ii) as follows. It suffices to show that in the
infemum defining distil, G) (G = A[z)) we can replace G by a finite set.
Let gn E G. Then clearly
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hence it suffices to show that

81 = {g:llf-gll ~ Ilf--goll}

is finite. But for any g E 81

II g II ~ Ilfll + Ilf - g II ~ Ilfll + !if - go II;

hence 8 1 is a subset of the set

82 = {g E G: II g II ~ Ilf!1 + Ilf - go !I},
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and we will be done once we show that 8 2 is finite. Let J = {a1 , .•• , an}. By
the map

(5)

we can identify 8 2 with a subset of the closed ball of Cn of radius
ilfll -+- U -+- go II where Cn is normed by

Next notice that G under the norm II . IIJ is discrete since if g1 , g2 E G and
II g1 - g211 < 1 then g1 - g2 == 0 on J by definition of J. Furthermore, under
this same norm 8 2 is a closed bounded subset of G. Since the map in (5)
preserves the norm, the image in Cn of 8 2 is discrete, bounded, and closed.
It is well known that the norm Iii· Ilion Cn is equivalent to the usual Euclidean
norm on cn (as identified with R2n), hence the image of 82in (5) is also closed,
bounded, and discrete in the usual topology on cn. It is therefore compact
and discrete, hence finite. Since the map (5) is an injection (the elements of G
must be considered here as defined on J alone, not X) the set 8 2 is finite. I

We note in passing that we have proved something more than is contained
in the statement of Corollary 4 and this might conceivably be of use in actually
determining distx(j, A[z]) on a computer, for example. We see from the proof
that to find infqEA[z] Ilf - q Ilx we can first take any qo E A[z] and then find

inf Ilf- qlIJ,
qEA[z]

Ilqll ,;;;!] fl:+l] f-qo]]

which entails only a finite number of calculations.
The last result also holds in the real case. The comment of the last para

graph applies here as well, with A[z] replaced by Z[x].

COROLLARY 5. Let X be a compact subset of R with d(X) < 1. Then for
any fin CR(X) we have
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(i) distxU; Z[x]) distAl; Z[x]), and

(ii) there exists q in Z[x] such that

! f - q! J =c distAl; Z[x]).

The proof of this corollary parallels that of Corollary 4 with minor changes.
The proof that J is finite in this case follows from the corresponding argument
in the proof of Corollary 4 plus Proposition 6.2 in Ferguson [2, p. 64].
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